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First-Order Transitions in One-Dimensional 
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We point out the existence of first-order phase transitions in a family of one- 
dimensional classical spin systems. The relevant features of such models are that 
they involve only local (but complex) interactions and that the corresponding 
transfer matrices are self-adjoint operators. Moreover, for a wide range of 
coupling parameters the models satisfy the reflection positivity condition. The 
generalization for continuous spin systems enjoys similar properties. 
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It is well known that phase transitions cannot occur in one-dimensional 
classical systems with real interactions which are not too long-ranged. More 
precisely, if the maximum interaction energy of the spins {ai}_ L ~i~ L with 
the remaining spins {ai} I~l > L is bounded as L ~ 0% then there is a unique 
infinite-volume Gibbs measure at all temperatures (see ref. 1 for a recent 
review). In particular, for pair interactions J(x - y) this happens whenever 
Zx Ixl IJ(x)l < oo. Theorems of this kind can be proven by several different 
methods, including Perron-Frobenius  arguments, (2) entropy-energy 
arguments, (3) and a very simple finite-energy argument. (4~ 

Therefore, in order to construct a one-dimensional classical spin 
system having a phase transition, it is necessary to violate at least one of 
the hypotheses of the uniqueness theorems, namely reality or short-ranged- 
ness. One possibility is to make the interaction long-ranged, such as J(x) 
Ixl-~ with 1 <e~<2.  In this case it is possible to establish rigorously the 
existence of a phase transition: see refs. 1 and 5-7 for the case 1 < e < 2, 
and ref. 8 for the more delicate and intriguing (9) borderline case ~ = 2. In 
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some such cases the reflection-positivity property also holds: for example, 
it holds for J ( x ) = A ( I x l  + b )  ~ for any A, b~>0 and ~>0 .  (1~ 

Another possibility, less commonly considered, is to make the inter- 
action energy complex. For example, if one introduces a pure imaginary 
external magnetic field, then there is a phase transition at tow enough 
temperatures (Lee-Yang singularity). (11) However, in this example the 
transfer matrix is not self-adjoint, and in particular the interaction is not 
reflection-positive, which prevents the connection with quantum systems in 
the continuum limit. In this note we introduce a family of one-dimensional 
classical spin models with a local, complex  interaction which have a self- 
adjoint (Hermitian) transfer matrix, satisfy reflection positivity, and have a 
series of first-order phase transitions. A similar complex interaction with 
self-adjoint transfer matrix has been previously considered by Lebowitz 
and Gallavotti (12) for the Ising model. However, such a model exhibits a 
conventional critical behavior and has no phase transition for finite 
temperature. 

We consider a classical spin variable s, fluctuating on the unit circle 
among the q-roots of unity, 

s - = (  c~ 27rp" , q sin 2qp ' )  ' 

with the following Hamiltonian: 

N 

~ = -  ~ ( J s , ' s , + l - - i e s ,  x s n + l )  
n = l  

n = l  

pn =0,..., q -  1 (1) 

2~ 1 cos - -  ( p .  - p .  + ~) + it sin 2z~ (P .  _ P .  + 1 ) 
q q 

(2) 

where the coupling constants J and e are real numbers. For ~ = 0 the model 
reduces to the nearest neighbor Zq-states clock model (q = 2 corresponds 
to the Ising model) which has no phase transition in one dimension for 
nonvanishing temperature (fl < oo). 

The Hamiltonian (2) is translation invariant and involves only local 
couplings. The second term in (2) is not invariant under inversion of space 
orientation. The partition function of the system is given by 

N 

Z(f l ,  S, e ) = ~ 1~ exp(flJSn " S, + l -- ifleSn • S, + t ) (3) 
{s}. = 1 

We consider a finite-space volume with N sites and periodic boundary 
conditions, sN+l = sl. The transfer matrix T is a self-adjoint operator (i.e., 
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a Hermitian q x q matrix) for any real values of the coupling constants J 
and e. 

Let us consider the particular cases q = 3, 4 for simplicity. The eigen- 
values of the transfer matrix T for the 3-state model are 

20 = e J€ + 2e  Jill2 cos(j~/3 x/3/2) 

21 = e sr - 2e J,/2 cos(fl/3 x/-3/2 + ~/3) 

22 = e J~ - 2 e  J]~/2 COS(/~/3 x/3/2 - ~z/3) 

(4) 

In the thermodynamic limit (N--* oo) only the leading eigenvalue is rele- 
vant. However, due to the existence of level crossing, such an eigenvalue 
varies from 2o to 22 depending on the temperature and the values of the 
coupling constants J and e. Crossing points of leading levels correspond to 
transition points of the models. The corresponding transition temperatures 
are given by 

2(2m+ 1)~ 
(5) 

rn being a positive (negative) integer for positive (negative) values of the 
coupling e. The lattice of transition points has a double-periodic structure; 
for fixed e the period between transition temperatures is A~c = 4rc/(3 xfl3/3), 
and A~c=47r/(3 x f 3 f l )  is the period between values of /3 at consecutive 
transition points for fixed ft. 

The periodic behavior in/3 can easily be understood as a consequence 
of the invariance of the Hamiltonian under global spin rotations. In fact, 
the eigenvectors vk, k = 0, 1, 2, of the transfer matrix T(fl, J,/3) for given 
values of the parameters fl, J, and e transform as 

t ~- e i2rcmpn/3Vk 
l)k ~ /)(k + m, mod 3) 

under spin rotations. Furthermore, since 

~+ 4rcm 
T'(f l ,  J, ~) = ei2~mp"/3T(fl, J,/3) e -i2~mpn/3 = T fl, J, ~ j  

the corresponding eigenvalues 2~(fl, J, e), k = 0, 1, 2, are periodic on/3, 

/ 47tin '~ 
2(k . . . . . .  d 3)(fl, J~ /3) = 2k [ f l ,  J , /3  --t- 3-V J \ 

822/'65/3-4-5 
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The dependence of the energy density with respect to the temperature 
is discontinuous at the transition points (5), 

3e 
A ~  I f l=f l  c - -  e3Jflc/2 + 1 (6) 

which means that they correspond to first-order phase transitions. The 
energy gap at the transition points decreases as tic increases and the 
transition becomes of second order at zero temperature (tic = oo) for any 
value of e, as in the pure three-state clock model. The three-state model (2) 
is the simplest system of one-dimensional classical spin models undergoing 
a phase transition at nonvanishing temperature. 

The existence of such a phase transition is due to the presence of the 
e term in the Hamiltonian. For e = 0, the Perron-Frobenius theorem (or 
any of the methods quoted in the first paragraph of this paper) implies tliat 
there is no phase transition, in this case, for any value of fl < oo. However, 
with e r 0, the entries in the transfer matrix are not longer real (much less 
real and positive), so the Perron-Frobenius theorem cannot be applied, 
and, even in the absence of the exchange interaction ( J =  0), the system 
undergoes a phase transition at the temperatures given by (5). 

We remark that the Hamiltonian (2) involves only local (nearest- 
neighbor) interactions and although the e term is imaginary, the transfer 
matrix is a self-adjoint operator. Furthermore, in chains with an odd num- 
ber of sites the model satisfies the reflection-positivity property with respect 
to the center of the chain for any value of the coupling constants fl and e 
(see Appendix A). Reflection-positivity also holds in chains with an even 
number of sites for large values of fl [fl > (2/3J)log 2] because then the 
transfer matrix is nonnegative (see Appendix A). 

In the thermodynamic limit the behavior of the correlation function of 
spin variables (s.)k = (cos(2knpn/q), sin(2k~pn/q)) 

( (S")k ' (S"+m)~ ' )=26k '  k\---~k0 / \---~k0 / , (7) 

shows that at the transition points the correlation 

IN - k A ~  lim ((S~)K" (Sn+m)k') ---- 2Vk, Vlk I (8) 
m ~ o ~  

becomes long-ranged. In fact, the correlation length diverges as ~(fl)= 
( f l - l _  fl~-1)-1 at the transition points. Therefore, the phase transitions of 
this model are very peculiar: they are of first order (for fl < oo), but have 
infinite correlation length. The critical exponents are v = 1 and t /= 1. This 
interesting feature and other unusual properties of the model suggest that 
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the conventional scenario for first-order transitions (13) does not hold in this 
case (see ref. 14 for criticism of first-order phase transition scenarios). 

The 4-state model exhibits a similar behavior. In this case the transfer 
matrix has the following eigenvalues: 

20 = 2 cosh J/7 + 2 cos/Te, 

/~2 = 2 cosh J/7 - 2 cos fie, 

21  ~-- 2 sinh J/7 + 2 sin fie 

)~ = 2 sinh J/7 - 2 sin/Te 
(9) 

Transition points correspond to crossings of leading levels. The transition 
temperatures can be read from the equations 

/7<+ (4n+ 1)~ 1 (e  J~+] 
- 4 e  + - s i n -  1 e t,,7 / (10a) 

,fe-aU\ /7/--(4n+l)rC+lc~ ) 4 e  e (10b) 

where n is an arbitrary integer and fi+ ( f i )  corresponds to the crossing of 
levels with the same (opposite) index parity. In this case the lattice of 
transition temperatures is no longer periodic, unlike that of the 3-state 
model (5). However, for fixed temperatures fl and exchange coupling J, the 
e-lattice of transition couplings, 

e+ ( 4 n + l ) r C + ~ s i  n , {e -Jn~ 
4fl \ ,,/2 / 

e<7 ( 4 n + l ) r C + ~ c o s  l ( e - J n )  
4/7 \ x / 2  / 

(11) 

is periodic and its period, ~/fl, is larger than that of the 3-state model. 
The transition is also of first order and the gap of the energy density 

at the transition points (10a) and (10b) is 

Ag + 
e - J +  Js in  2fl~e 

sin2 fi~e 

AN = 2e 
e + J +  J sin 2flce 

sin 2 rice 

(12) 

respectively. The gap decreases as /7c increases, and vanishes in the limit 
/7c--* 0% which corresponds to a second-order phase transition for any 
value oft .  
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The reason for the existence of phase transitions is again the e term. 
In fact, even in the pure e case ( J =  0) there are phase transitions for the 
temperatures/3c = (2n + 1 ) rc/2e. The 4-state model is reflection-positive for 
any temperature in odd chains (see Appendix). In even chains it is also 
reflection-positive for small temperatures/3 > sinh 1(1/J), because then the 
transfer matrix is nonnegative. 

The correlation function of spin variables sn at the transition points 
(7) is constant in the thermodynamic limit (8). Therefore, the correlation 
length at such first-order transition points is infinite. The critical exponents 
a r e v = l a n d t / = l .  

The general case of q-state models with q > 4 has a similar behavior. 
The eigenvalues of the transfer matrix are 

q - - 1  

2k = ~ exp[flJ cos(2~n/q) + i~e sin(2rcn/q)- ik(2rcn/q) ] 
n = O  

(13) 

Leading eigenvalues also cross an infinite number of times for finite 
temperatures. However, in this case there is not periodic behavior in 
the ~ coupling. The transition points at finite temperature correspond to 
first-order phase transitions with an infinite correlation length (v= 1, 
~/= 1). The only second-order transition occurs at zero temperature for 
vanishing 5. On the other hand, for a wide range of values of coupling 
parameters the transfer matrix is nonnegative and the models satisfy the 
reflection-positivity condition on any chain. 

Let us now consider the continuum generalization (q--* o0) of the 
above spin models. The fluctuating variable s sweeps in such a case the 
whole unit circle and the dynamics is defined by the Hamiltonian (2). 
The model is 0(2) invariant and it is the one-dimensional analog of the 
X-Y model. The partition function is defined by 

N 2~  

z(/%J,~)= I1 fo d0m 
m = l  

N 

x [I exp[flJcos(O,-O,,+l)+iflesin(On-On+l)] (14) 
n = l  

and we consider periodic boundary conditions. The corresponding transfer 
matrix is given by 

27~ 

ET~](0)= dO' {expEflJcos(O-O')+iflesin(O-O')]} r (15) 
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and has the following eigenvalues: 

(2rt(J+g) kn ~_ ) ~k~-~g J I!kl(J~( J2 --/22)172), I~;I ~< J 

2k ] 2rt ( j  + e)k/2 I \7------J/ JIkl(fi(gz-J2)l/2)' Igl >J 
(16) 

where k is an integer and Ilk I, Jr~l are the Bessel functions of integer order. 
The matching of the eigenvalues (16) at e = + J  is completely smooth. All 
the eigenvalues 2k are positive for It[ ~<J and reflection-positivity holds in 
such a case for any finite chain, whereas for I~l > J some of them might be 
negative and the system is only reflection-positive for odd chains. 

We will restrict the analysis to the region leL<~J,  for simplicity, 
because the discussion for lel ~>J is quite similar. The dependence of the 
eigenvalues (16) with respect to e is displayed in Figs. 1 and 2 for J =  1 and 
some values of ft. 

Transition points correspond to the crossing of two consecutive 
leading eigenvalues. Therefore the transition temperatures fik are 
parametrized by an integer and given by the condition 

2 k ( ~ k  , J,  ,9 , )=l~k+l( f lk  , J~ ~,) (17) 

where 2k(fl, aT, e) is the leading eigenvalue of the transfer matrix for 
ilk- i < fl ~< ilk- The values of e corresponding to a transition point for fixed 
temperature and exchange coupling J are the solutions of the equation 

I l k  + ll(fl(J 2- ~2k)I/2)__(J--Sk]i/2 
i ik lCf lCj2 _ e2)1/2) \ J +  ek] 

(18) 

The source of long-range fluctuations leading to the existence of phase 
transitions is again the e term, which breaks the positivity-improving 

~k i0.- 

8.- 

6.- 

4.- 

2 

0.2 0.4 0.6 

X 

.8 1 .  
E 

Fig. 1. Leading eigenvalues of the transfer matrix as functions of e for J = 1 and fl = 4. 



490 Asorey and Esteve 

Fig. 2. 
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6 

The e dependence of leading eigenvalues of the transfer matrix for J :  1 and fl = 10. 
We remark the existence of a critical point at e = J = 1. 

p roper ty  of the transfer  matrix.  In the pure  case J = 0 the eigenvalues of the 
transfer matr ix  

2k = 2rcJikL(fle ) (19) 

also exhibit  crossing of leading levels indicating the existence of phase 
transitions. 

We  remark  that  for integer values of/3, e# 1 = J is a t ransi t ion point,  
as can be shown from the asympto t ic  expansion 

for e ~ J . In  the-same way it can be shown that  ~1 # = - J  is a t ransi t ion 
point  for integer values of ft. 

The  free energy density at the t ransi t ion points  (17) is d iscont inuous 
as for the case of the discrete spin models,  indicating that  the model  under-  
goes a f irst-order phase  transition. The  corresponding energy density gap 

2 1 
A# k = ~ (eft - k) - ~ (21) 

decreases as/3 -~ oo (see Fig. 3), but  the limit gap vanishes only if e ~ 0. 
The  expecta t ion value of the local observable  is in(On-On+l) ,  

((fl, J , e ) = ( i s i n ( O n - O n + l ) > ,  is also. discont inuous at the transi t ion 
points. The  cor responding  gap is 

2ek(ekfl - -  k )  + ek  - -  J 
A~(fl, J, ek) = fl(j2 _ ~ )  (22) 

Therefore,  the different phases  of the model  can be character ized by the 
value of the order  pa rame te r  ~(fl, J, ek). The  physical  in terpre ta t ion of the 
existence of long-range f luctuations in this one-dimensional  model  is bet ter  
unders tood  in terms of such an order  parameter .  The dominan t  configura- 
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Fig. 3. 
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Dependence of the free energy density on the e parameter for J = 1 and ~ = 2, and 10. 

tions of each phase are those whose spins turn around the periodic lattice 
chain forming a helix. The relative angle between nearest neighbor spins 
has a continuous dependence on e except at the critical points, where it 
suffers a jump given by (22). It is remarkable that at the transition point 
both phases coexist and the model can have vortexlike excitation through 
the chain. 

The correlation length of the finite-temperature transition points is 
infinite as in the case of clock models (v = 1, ~/= 1). There is only one 
second-order critical point at fl-- ~ ,  e = 0. The difference between the two 
types of critical points is that in the case of first-order transitions only the 
two highest level eigenvalues of the transfer matrix cross at the critical 
point, whereas in the case of second-order phase transition fl = ~ ,  e -- 0 all 
the levels degenerate to the leading eigenvalue. This implies that dilatation 
invar~ance only holds in the latter case, which would correspond to a fixed 
point of the renormalization group. A detailed analysis of the renormaliza- 
tion group flow of those systems will be carried out elsewhere. The 
continuum limit at the second-order critical point B -- ~ ,  ~ -- 0 can be taken 
keeping the leading eigenvalue of the transfer matrix fixed. It corresponds 
to the scaling limit in lattice spacing a ~ 0 when fl ~ ~ keeping fla and fie 
constants. The associated quantum system is a planar rotor. The scaling 
limit of the family of first-order transition points flkek = k + 1/2 leads to a 
quantum system with degenerated ground state. (15) 

In spite of the fact that this model has complex cloupings, the con- 
tinuum limit leads to a consistent quantum mechanical system because the 
reflection-positivity property holds for large (small) values of fl (E). In fact, 
the corresponding Boltzmann weights are not effectively complex, because 
the partition function (14) can written as 

Z ( / ~ , J , e ) = 2  1-I fodOm e~JC~176176 (23) 
m = l  " n = l  
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where all Boltzmann weights are real. The only relevant features of the 
presence of e terms are that the weights are not positive definite and that 
the system is not time-reversal invariant. The last property follows from the 
fact that reversing the orientation of the chain is equivalent to a change on 
the sign of the e parameter and the spectrum of the transfer matrix is not 
invariant under such a change for e r 0. This property is inherited by the 
corresponding quantum systems. 

In summary, the families of one-dimensional models introduced above 
undergo first-order phase transitions due to the presence of a local 
imaginary e term which breaks the positivity-improving character of the 
transfer matrix, but preserves in many cases reflection-positivity. The most 
relevant features of such phase transitions is that they have infinite correla- 
tion length and some other unusual properties, (16) which suggests that the 
conventional scenario for first-order phase transitions does not hold in 
such a case. The discussion of the peculiarities of this type of first-order 
transition will be carried out in a forthcoming paper. (16) 

APPENDIX.  R EFLECTIO N- POSIT IV ITY 

A1. Odd Chains 

In chains with odd number of points the center of the chain belongs 
to the lattice. In such a case the chain can be split into two symmetric 
pieces A+ = {(N+ 1)/2, (N+ 3)/2 ..... N} and A_ = {1, 2 ..... (N+ 1)/2} with 
nonempty overlapping. For any function F of spin variables with support 
on the sublattice A+ its reflection OF with respect to the middle point 
(U+ 1)/2 

OF(S(N+ 1)/2,'", S1) = F(S(N+ 1)/2,"', SN) 

is supported on the lattice A_. Reflection-positivity means that for any 
such function F the expectation value 

m 

(OFF) >~ 0 (A.1) 

is nonnegative. The overbar denotes complex conjugation and ordering 
reversal of spin variables, 

a ( s 1  ,..., S(N+ 1)/2) = G*(S(N+ 1)/2,'", S1) (A.2) 

The Hamiltonian of the q-state clock model (2) and its continuous 
generalizations splits into two pieces 

J4~ = o~+ + ~ = ~+ + 0J4Q (A.3) 
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with support on A+ and A 
holds in those models for any value o f / / a n d  ~, because 

N 

(-O-FF) = H H e-~*+e-~'*e--O-PF= [I  G*G >>- 0 
rt = 1 S n S(N+ 1)/2 

with 

, respectively. Thus, reflection-positivity (A.1) 

N 

G =  [ I  e ~ + F  
n = ( N +  1 ) / 2  

(A.4) 

In fact, in this case reflection-positivity follows from the Hermitian charac- 
ter of the transfer matrix. 

A2. Even Chains 

If the chain has an even number of sites, its center does not belong to 
the chain and therefore it can be split into two disjoint pieces 

A + = { ( N + 2 ) / 2 , ( N + 4 ) / 2  ..... N},  A _ = { 1 , 2  ..... N/2} 

The Hamiltonian of the clock models considered above can be split into 
three terms 

~ = ~ +  + ~  + ~ +  = ~ +  + 0~+ + ~ +  (a.5) 

where ~+  contains the terms coupling the spins SN/2 and S ( N + 2 ) / 2 .  

Proceeding in a similar way as in the previous case, we obtain 
N 

(0---FF)= 1-[ H e 'ae+e ~w--O-Pe-~W• 
n =  1 s n 

= [ I  r(sN/2, s N+2 /2) 
SN/2 S(N + 2)/2 

= (a, r a )  (A.6) 

for any function F of spin variables with support on A +. The function G 
is defined by 

N 

G =  H e ~ + F  
n = ( N  + 2 ) / 2  

and T(SN/2, S(N+2)/2) is the transfer matrix element defined by 

T(S N/2, S(N + 2)/2) = exp[ - flit% (S N/2, S(N + 2)/2)] 

Therefore in this case the reflection-positivity property of the models is 
equivalent to nonnegativity of the corresponding transfer matrix. 
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